Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 6(1): 998, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37775688

RESUMO

Here we demonstrate, in rodents, how the timing of feeding behaviour becomes disordered when circulating glucocorticoid rhythms are dissociated from lighting cues; a phenomenon most commonly associated with shift-work and transmeridian travel 'jetlag'. Adrenalectomized rats are infused with physiological patterns of corticosterone modelled on the endogenous adrenal secretory profile, either in-phase or out-of-phase with lighting cues. For the in-phase group, food intake is significantly greater during the rats' active period compared to their inactive period; a feeding pattern similar to adrenal-intact control rats. In contrast, the feeding pattern of the out-of-phase group is significantly dysregulated. Consistent with a direct hypothalamic modulation of feeding behaviour, this altered timing is accompanied by dysregulated timing of anorexigenic and orexigenic neuropeptide gene expression. For Neuropeptide Y (Npy), we report a glucocorticoid-dependent direct transcriptional regulation mechanism mediated by the glucocorticoid receptor (GR). Taken together, our data highlight the adverse behavioural outcomes that can arise when two circadian systems have anti-phasic cues, in this case impacting on the glucocorticoid-regulation of a process as fundamental to health as feeding behaviour. Our findings further highlight the need for development of rational approaches in the prevention of metabolic dysfunction in circadian-disrupting activities such as transmeridian travel and shift-work.


Assuntos
Glucocorticoides , Neuropeptídeos , Ratos , Animais , Hipotálamo/metabolismo , Comportamento Alimentar , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Expressão Gênica
2.
Neuroscience ; 528: 37-53, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37532013

RESUMO

Fibromyalgia (FM) is a syndrome characterized by chronic pain with depression as a frequent comorbidity. However, efficient management of the pain and depressive symptoms of FM is lacking. Given that endogenous oxytocin (OXT) contributes to the regulation of pain and depressive disorders, herein, we investigated the role of OXT in an experimental reserpine-induced FM model. In FM model, OXT-monomeric red fluorescent protein 1 (OXT-mRFP1) transgenic rats exhibited increased depressive behavior and sensitivity in a mechanical nociceptive test, suggesting reduced pain tolerance. Additionally, the development of the FM-like phenotype in OXT-mRFP1 FM model rats was accompanied by a significant reduction in OXT mRNA expression in the magnocellular neurons of the paraventricular nucleus. OXT-mRFP1 FM model rats also had significantly fewer tryptophan hydroxylase (TPH)- and tyrosine hydroxylase (TH)-immunoreactive (ir) neurons as well as reduced serotonin and norepinephrine levels in the dorsal raphe and locus coeruleus. To investigate the effects of stimulating the endogenous OXT pathway, rats expressing OXT-human muscarinic acetylcholine receptor (hM3Dq)-mCherry designer receptors exclusively activated by designer drugs (DREADDs) were also assessed in the FM model. Treatment of these rats with clozapine-N-oxide (CNO), an hM3Dq-activating drug, significantly improved characteristic FM model-induced pathophysiological pain, but did not alter depressive-like behavior. The chemogenetically induced effects were reversed by pre-treatment with an OXT receptor antagonist, confirming the specificity of action via the OXT pathway. These results indicate that endogenous OXT may have analgesic effects in FM, and could be a potential target for effective pain management strategies for this disorder.


Assuntos
Fibromialgia , Ocitocina , Ratos , Humanos , Animais , Ocitocina/farmacologia , Ocitocina/metabolismo , Reserpina/farmacologia , Reserpina/metabolismo , Fibromialgia/induzido quimicamente , Fibromialgia/metabolismo , Proteínas Luminescentes/genética , Dor/metabolismo , Ratos Transgênicos , Neurônios/metabolismo , Receptores de Ocitocina/metabolismo
3.
Proc Natl Acad Sci U S A ; 120(15): e2211996120, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37023133

RESUMO

Disrupted circadian activity is associated with many neuropsychiatric disorders. A major coordinator of circadian biological systems is adrenal glucocorticoid secretion which exhibits a pronounced preawakening peak that regulates metabolic, immune, and cardiovascular processes, as well as mood and cognitive function. Loss of this circadian rhythm during corticosteroid therapy is often associated with memory impairment. Surprisingly, the mechanisms that underlie this deficit are not understood. In this study, in rats, we report that circadian regulation of the hippocampal transcriptome integrates crucial functional networks that link corticosteroid-inducible gene regulation to synaptic plasticity processes via an intrahippocampal circadian transcriptional clock. Further, these circadian hippocampal functions were significantly impacted by corticosteroid treatment delivered in a 5-d oral dosing treatment protocol. Rhythmic expression of the hippocampal transcriptome, as well as the circadian regulation of synaptic plasticity, was misaligned with the natural light/dark circadian-entraining cues, resulting in memory impairment in hippocampal-dependent behavior. These findings provide mechanistic insights into how the transcriptional clock machinery within the hippocampus is influenced by corticosteroid exposure, leading to adverse effects on critical hippocampal functions, as well as identifying a molecular basis for memory deficits in patients treated with long-acting synthetic corticosteroids.


Assuntos
Relógios Circadianos , Hipocampo , Ratos , Animais , Hipocampo/metabolismo , Regulação da Expressão Gênica , Ritmo Circadiano/fisiologia , Corticosteroides/farmacologia , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/metabolismo
4.
Oncogene ; 41(50): 5347-5360, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36344675

RESUMO

ARID1a (BAF250), a component of human SWI/SNF chromatin remodeling complexes, is frequently mutated across numerous cancers, and its loss of function has been putatively linked to glucocorticoid resistance. Here, we interrogate the impact of siRNA knockdown of ARID1a compared to a functional interference approach in the HeLa human cervical cancer cell line. We report that ARID1a knockdown resulted in a significant global decrease in chromatin accessibility in ATAC-Seq analysis, as well as affecting a subset of genome-wide GR binding sites determined by analyzing GR ChIP-Seq data. Interestingly, the specific effects on gene expression were limited to a relatively small subset of glucocorticoid-regulated genes, notably those involved in cell cycle regulation and DNA repair. The vast majority of glucocorticoid-regulated genes were largely unaffected by ARID1a knockdown or functional interference, consistent with a more specific role for ARID1a in glucocorticoid function than previously speculated. Using liquid chromatography-mass spectrometry, we have identified a chromatin-associated protein complex comprising GR, ARID1a, and several DNA damage repair proteins including P53 binding protein 1 (P53BP1), Poly(ADP-Ribose) Polymerase 1 (PARP1), DNA damage-binding protein 1 (DDB1), DNA mismatch repair protein MSH6 and splicing factor proline and glutamine-rich protein (SFPQ), as well as the histone acetyltransferase KAT7, an epigenetic regulator of steroid-dependent transcription, DNA damage repair and cell cycle regulation. Not only was this protein complex ablated with both ARID1a knockdown and functional interference, but spontaneously arising DNA damage was also found to accumulate in a manner consistent with impaired DNA damage repair mechanisms. Recovery from dexamethasone-dependent cell cycle arrest was also significantly impaired. Taken together, our data demonstrate that although glucocorticoids can still promote cell cycle arrest in the absence of ARID1a, the purpose of this arrest to allow time for DNA damage repair is hindered.


Assuntos
Reparo do DNA , Proteínas Nucleares , Receptores de Glucocorticoides , Proteína 1 de Ligação à Proteína Supressora de Tumor p53 , Humanos , Ciclo Celular , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Cromatina/genética , Dano ao DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Histona Acetiltransferases/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/genética , Receptores de Glucocorticoides/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo
5.
J Neuroendocrinol ; 34(10): e13194, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36056546

RESUMO

Over 50% of depressed patients show hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis. Conventional therapy takes weeks to months to improve symptoms. Ketamine has rapid onset antidepressant effects. Yet its action on HPA axis activity is poorly understood. Here, we measured the corticosterone (CORT) response to ketamine administered at different times of day in the Wistar-Kyoto (WKY) rat. In male rats, blood was collected every 10 min for 28 h using an automated blood sampling system. Ketamine (5/10/25 mg · kg) was infused through a subcutaneous cannula at two time points-during the active and inactive period. CORT levels in blood were measured in response to ketamine using a radioimmunoassay. WKY rats displayed robust circadian secretion of corticosterone and was not overly different to Sprague Dawley rats. Ketamine (all doses) significantly increased CORT response at both infusion times. However, a dose dependent effect and marked increase over baseline was observed when ketamine was administered during the inactive phase. Ketamine has a robust and rapid effect on HPA axis function. The timing of ketamine injection may prove crucial for glucocorticoid-mediated action in depression.


Assuntos
Ketamina , Sistema Hipófise-Suprarrenal , Masculino , Ratos , Animais , Sistema Hipotálamo-Hipofisário , Corticosterona , Ketamina/farmacologia , Ratos Sprague-Dawley , Ratos Endogâmicos WKY , Hormônio Liberador da Corticotropina
6.
PLoS Genet ; 17(8): e1009737, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34375333

RESUMO

Ultradian glucocorticoid rhythms are highly conserved across mammalian species, however, their functional significance is not yet fully understood. Here we demonstrate that pulsatile corticosterone replacement in adrenalectomised rats induces a dynamic pattern of glucocorticoid receptor (GR) binding at ~3,000 genomic sites in liver at the pulse peak, subsequently not found during the pulse nadir. In contrast, constant corticosterone replacement induced prolonged binding at the majority of these sites. Additionally, each pattern further induced markedly different transcriptional responses. During pulsatile treatment, intragenic occupancy by active RNA polymerase II exhibited pulsatile dynamics with transient changes in enrichment, either decreased or increased depending on the gene, which mostly returned to baseline during the inter-pulse interval. In contrast, constant corticosterone exposure induced prolonged effects on RNA polymerase II occupancy at the majority of gene targets, thus acting as a sustained regulatory signal for both transactivation and repression of glucocorticoid target genes. The nett effect of these differences were consequently seen in the liver transcriptome as RNA-seq analysis indicated that despite the same overall amount of corticosterone infused, twice the number of transcripts were regulated by constant corticosterone infusion, when compared to pulsatile. Target genes that were found to be differentially regulated in a pattern-dependent manner were enriched in functional pathways including carbohydrate, cholesterol, glucose and fat metabolism as well as inflammation, suggesting a functional role for dysregulated glucocorticoid rhythms in the development of metabolic dysfunction.


Assuntos
Corticosterona/farmacologia , Fígado/patologia , Receptores de Glucocorticoides/metabolismo , Animais , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/genética , Glucocorticoides/metabolismo , Fígado/metabolismo , Masculino , Periodicidade , Transporte Proteico/genética , RNA Polimerase II/genética , RNA Mensageiro/genética , Ratos , Ratos Sprague-Dawley , Receptores de Glucocorticoides/fisiologia , Ativação Transcricional/genética , Transcriptoma/genética
7.
Endocr Rev ; 41(3)2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32060528

RESUMO

The past decade has seen several critical advances in our understanding of hypothalamic-pituitary-adrenal (HPA) axis regulation. Homeostatic physiological circuits need to integrate multiple internal and external stimuli and provide a dynamic output appropriate for the response parameters of their target tissues. The HPA axis is an example of such a homeostatic system. Recent studies have shown that circadian rhythmicity of the major output of this system-the adrenal glucocorticoid hormones corticosterone in rodent and predominately cortisol in man-comprises varying amplitude pulses that exist due to a subhypothalamic pulse generator. Oscillating endogenous glucocorticoid signals interact with regulatory systems within individual parts of the axis including the adrenal gland itself, where a regulatory network can further modify the pulsatile release of hormone. The HPA axis output is in the form of a dynamic oscillating glucocorticoid signal that needs to be decoded at the cellular level. If the pulsatile signal is abolished by the administration of a long-acting synthetic glucocorticoid, the resulting disruption in physiological regulation has the potential to negatively impact many glucocorticoid-dependent bodily systems. Even subtle alterations to the dynamics of the system, during chronic stress or certain disease states, can potentially result in changes in functional output of multiple cells and tissues throughout the body, altering metabolic processes, behavior, affective state, and cognitive function in susceptible individuals. The recent development of a novel chronotherapy, which can deliver both circadian and ultradian patterns, provides great promise for patients on glucocorticoid treatment.


Assuntos
Hormônio Adrenocorticotrópico/metabolismo , Hidrocortisona/metabolismo , Hormônio Adrenocorticotrópico/fisiologia , Animais , Secreções Corporais , Ritmo Circadiano , Humanos , Hidrocortisona/fisiologia , Sistema Hipotálamo-Hipofisário , Via Secretória
8.
Endocrinology ; 160(5): 1044-1056, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30980716

RESUMO

Mineralocorticoid and glucocorticoid receptors (MRs and GRs) constitute a functionally important dual receptor system detecting and transmitting circulating corticosteroid signals. High expression of MRs and GRs occurs in the same cells in the limbic system, the primary site of glucocorticoid action on cognition, behavior, and mood; however, modes of interaction between the receptors are poorly characterized. We used chromatin immunoprecipitation with nucleotide resolution using exonuclease digestion, unique barcode, and single ligation (ChIP-nexus) for high-resolution genome-wide characterization of MR and GR DNA binding profiles in neuroblastoma cells and demonstrate recruitment to highly similar DNA binding sites. Expressed MR or GR showed differential regulation of endogenous gene targets, including Syt2 and Ddc, whereas coexpression produced augmented transcriptional responses even when MRs were unable to bind DNA (MR-XDBD). ChIP confirmed that MR-XDBD could be tethered to chromatin by GR. Our data demonstrate that MR can interact at individual genomic DNA sites in multiple modes and suggest a role for MR in increasing the transcriptional response to glucocorticoids.


Assuntos
Glucocorticoides/farmacologia , Receptores de Glucocorticoides/metabolismo , Receptores de Mineralocorticoides/metabolismo , Transcrição Gênica/efeitos dos fármacos , Animais , Sequência de Bases , Sítios de Ligação/genética , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , DNA/genética , DNA/metabolismo , Camundongos , Ligação Proteica , Interferência de RNA , Ratos , Receptores de Glucocorticoides/genética , Receptores de Mineralocorticoides/genética , Elementos de Resposta/genética
9.
J Neuroendocrinol ; 31(3): e12653, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30362285

RESUMO

Since the 1950s, the systems level interactions between the hypothalamus, pituitary and end organs such as the adrenal, thyroid and gonads have been well known; however, it is only over the last three decades that advances in molecular biology and information technology have provided a tremendous expansion of knowledge at the molecular level. Neuroendocrinology has benefitted from developments in molecular genetics, epigenetics and epigenomics, and most recently optogenetics and pharmacogenetics. This has enabled a new understanding of gene regulation, transcription, translation and post-translational regulation, which should help direct the development of drugs to treat neuroendocrine-related diseases.


Assuntos
Neuroendocrinologia/instrumentação , Neuroendocrinologia/métodos , Sistemas Neurossecretores/fisiologia , Animais , Edição de Genes , Sequenciamento de Nucleotídeos em Larga Escala , História do Século XX , História do Século XXI , Humanos , Hibridização in Situ Fluorescente , Neuroendocrinologia/história , Optogenética , Receptores de Esteroides
10.
Ann Endocrinol (Paris) ; 79(3): 112-114, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29627070

RESUMO

Glucocorticoid (GC) hormones play significant roles within homeostasis and the chrono-dynamics of their regulatory role has become increasingly recognised within dysregulated GC pathology, particularly with metabolic phenotypes. Within this article, we will discuss the relevance of the ultradian homeostatic rhythm, how its dysregulation effects glucocorticoid receptor and RNA polymeraseII recruitment and may play a significant role within aberrant metabolic action.


Assuntos
Glucocorticoides/metabolismo , Doenças Metabólicas/metabolismo , Ritmo Ultradiano/fisiologia , Animais , Humanos , Sistema Hipotálamo-Hipofisário/fisiologia , Doenças Metabólicas/fisiopatologia , Hipersecreção Hipofisária de ACTH/metabolismo , Hipersecreção Hipofisária de ACTH/fisiopatologia , Sistema Hipófise-Suprarrenal/fisiologia , Receptores de Glucocorticoides/metabolismo
11.
Trends Endocrinol Metab ; 29(4): 204-207, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29477282

RESUMO

In a recent study, Jubb et al. used 3D DNA FISH to assess glucocorticoid-induced 'chromatin decompaction' at multiple loci. Determinants of the specificity, speed, and duration of this phenomenon further enhance our understanding of how the glucocorticoid receptor (GR) dynamically alters chromatin accessibility during acute-phase transcriptional regulation and beyond.


Assuntos
Cromatina , Receptores de Glucocorticoides , Glucocorticoides
12.
Endocrinology ; 158(5): 1486-1501, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28200020

RESUMO

Glucocorticoids regulate hippocampal function in part by modulating gene expression through the glucocorticoid receptor (GR). GR binding is highly cell type specific, directed to accessible chromatin regions established during tissue differentiation. Distinct classes of GR binding sites are dependent on the activity of additional signal-activated transcription factors that prime chromatin toward context-specific organization. We hypothesized a stress context dependency for GR binding in hippocampus as a consequence of rapidly induced stress mediators priming chromatin accessibility. Using chromatin immunoprecipitation sequencing to interrogate GR binding, we found no effect of restraint stress context on GR binding, although analysis of sequences underlying GR binding sites revealed mechanistic detail for hippocampal GR function. We note enrichment of GR binding sites proximal to genes linked to structural and organizational roles, an absence of major tethering partners for GRs, and little or no evidence for binding at negative glucocorticoid response elements. A basic helix-loop-helix motif closely resembling a NeuroD1 or Olig2 binding site was found underlying a subset of GR binding sites and is proposed as a candidate lineage-determining transcription factor directing hippocampal chromatin access for GRs. Of our GR binding sites, 54% additionally contained half-sites for nuclear factor (NF)-1 that we propose as a collaborative or general transcription factor involved in hippocampal GR function. Our findings imply a dose-dependent and context-independent action of GRs in the hippocampus. Alterations in the expression or activity of NF-1/basic helix-loop-helix factors may play an as yet undetermined role in glucocorticoid-related disease susceptibility and outcome by altering GR access to hippocampal binding sites.


Assuntos
Cromatina/genética , Sequências Hélice-Alça-Hélice , Hipocampo/metabolismo , Fatores de Transcrição NFI/metabolismo , Receptores de Glucocorticoides/metabolismo , Motivos de Aminoácidos , Animais , Sítios de Ligação , Cromatina/metabolismo , Suscetibilidade a Doenças , Regulação da Expressão Gênica , Genoma , Imunoprecipitação , Masculino , Ligação Proteica , Ratos , Receptores de Glucocorticoides/química , Receptores de Glucocorticoides/genética , Análise de Sequência , Estresse Fisiológico
13.
Neuropharmacology ; 115: 128-138, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-26987983

RESUMO

Modulation of metabotropic glutamate 2 (mGlu2) receptor function has huge potential for treating psychiatric and neurological diseases. Development of drugs acting on mGlu2 receptors depends on the development and use of translatable animal models of disease. We report here a stop codon mutation at cysteine 407 in Grm2 (cys407*) that is common in some Wistar rats. Therefore, researchers in this field need to be aware of strains with this mutation. Our genotypic survey found widespread prevalence of the mutation in commercial Wistar strains, particularly those known as Han Wistar. Such Han Wistar rats are ideal for research into the separate roles of mGlu2 and mGlu3 receptors in CNS function. Previous investigations, unknowingly using such mGlu2 receptor-lacking rats, provide insights into the role of mGlu2 receptors in behaviour. The Grm2 mutant rats, which dominate some selectively bred lines, display characteristics of altered emotionality, impulsivity and risk-related behaviours and increased voluntary alcohol intake compared with their mGlu2 receptor-competent counterparts. In addition, the data further emphasize the potential therapeutic role of mGlu2 receptors in psychiatric and neurological disease, and indicate novel methods of studying the role of mGlu2 and mGlu3 receptors. This article is part of the Special Issue entitled 'Metabotropic Glutamate Receptors, 5 years on'.


Assuntos
Consumo de Bebidas Alcoólicas/genética , Cistina/genética , Emoções/fisiologia , Mutação/genética , Receptores de Glutamato Metabotrópico/genética , Assunção de Riscos , Consumo de Bebidas Alcoólicas/psicologia , Animais , Hipocampo/fisiologia , Camundongos Knockout , Técnicas de Cultura de Órgãos , Prevalência , Ratos , Ratos Wistar , Receptores de Glutamato Metabotrópico/deficiência , Especificidade da Espécie
14.
Mol Cell Endocrinol ; 439: 46-53, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-27769714

RESUMO

In this paper we report differential decoding of the ultradian corticosterone signal by glucocorticoid target tissues. Pulsatile corticosterone replacement in adrenalectomised rats resulted in different dynamics of Sgk1 mRNA production, with a distinct pulsatile mRNA induction profile observed in the pituitary in contrast to a non-pulsatile induction in the prefrontal cortex (PFC). We further report the first evidence for pulsatile transcriptional repression of a glucocorticoid-target gene in vivo, with pulsatile regulation of Pomc transcription in pituitary. We have explored a potential mechanism for differences in the induction dynamics of the same transcript (Sgk1) between the PFC and pituitary. Glucocorticoid receptor (GR) activation profiles were strikingly different in pituitary and prefrontal cortex, with a significantly greater dynamic range and shorter duration of GR activity detected in the pituitary, consistent with the more pronounced gene pulsing effect observed. In the prefrontal cortex, expression of Gilz mRNA was also non-pulsatile and exhibited a significantly delayed timecourse of increase and decrease when compared to Sgk1, additionally highlighting gene-specific regulatory dynamics during ultradian glucocorticoid treatment.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Glucocorticoides/farmacologia , Especificidade de Órgãos/genética , Ritmo Ultradiano/genética , Animais , Corticosterona/farmacologia , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Masculino , Especificidade de Órgãos/efeitos dos fármacos , Hipófise/efeitos dos fármacos , Hipófise/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Receptores de Glucocorticoides/metabolismo , Ritmo Ultradiano/efeitos dos fármacos
15.
Proc Natl Acad Sci U S A ; 112(13): 4080-5, 2015 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-25775512

RESUMO

Glucocorticoids remain the cornerstone of treatment for inflammatory conditions, but their utility is limited by a plethora of side effects. One of the key goals of immunotherapy across medical disciplines is to minimize patients' glucocorticoid use. Increasing evidence suggests that variations in the adaptive immune response play a critical role in defining the dose of glucocorticoids required to control an individual's disease, and Th17 cells are strong candidate drivers for nonresponsiveness [also called steroid resistance (SR)]. Here we use gene-expression profiling to further characterize the SR phenotype in T cells and show that Th17 cells generated from both SR and steroid-sensitive individuals exhibit restricted genome-wide responses to glucocorticoids in vitro, and that this is independent of glucocorticoid receptor translocation or isoform expression. In addition, we demonstrate, both in transgenic murine T cells in vitro and in an in vivo murine model of autoimmunity, that Th17 cells are reciprocally sensitive to suppression with the calcineurin inhibitor, cyclosporine A. This result was replicated in human Th17 cells in vitro, which were found to have a conversely large genome-wide shift in response to cyclosporine A. These observations suggest that the clinical efficacy of cyclosporine A in the treatment of SR diseases may be because of its selective attenuation of Th17 cells, and also that novel therapeutics, which target either Th17 cells themselves or the effector memory T-helper cell population from which they are derived, would be strong candidates for drug development in the context of SR inflammation.


Assuntos
Ciclosporina/química , Glucocorticoides/química , Células Th17/citologia , Animais , Autoimunidade , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Calcineurina/química , Inibidores de Calcineurina/química , Núcleo Celular/metabolismo , Proliferação de Células , Modelos Animais de Doenças , Humanos , Inflamação , Interferon gama/metabolismo , Interleucina-17/metabolismo , Camundongos , Camundongos Transgênicos , Fenótipo , Esteroides/química
16.
Rheumatology (Oxford) ; 51(3): 403-12, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21891790

RESUMO

Activation of the glucocorticoid receptor (GR) by endogenous and synthetic glucocorticoids regulates hundreds of genes to control regulatory networks in development, metabolism, cognition and inflammation. Elucidation of the mechanisms that regulate glucocorticoid action has highlighted the dynamic nature of hormone signalling and provides novel insights into genomic glucocorticoid actions. The major factors that regulate GR function include chromatin structure, epigenetics, genetic variation and the pattern of glucocorticoid hormone secretion. We review our current understanding of the mechanisms that contribute to GR signalling and how these contribute to glucocorticoid sensitivity, resistance and side effects.


Assuntos
Glucocorticoides/fisiologia , Receptores de Glucocorticoides/metabolismo , Transdução de Sinais/fisiologia , Resistência a Medicamentos , Glucocorticoides/efeitos adversos , Humanos , Receptores de Glucocorticoides/genética
17.
Mol Cell Endocrinol ; 348(2): 383-93, 2012 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-21872640

RESUMO

In recent years it has become evident that glucocorticoid receptor (GR) action in the nucleus is highly dynamic, characterized by a rapid exchange at the chromatin template. This stochastic mode of GR action couples perfectly with a deterministic pulsatile availability of endogenous ligand in vivo. The endogenous glucocorticoid hormone (cortisol in man and corticosterone in rodent) is secreted from the adrenal gland with an ultradian rhythm made up of pulses at approximately hourly intervals. These two components - the rapidly fluctuating ligand and the rapidly exchanging receptor - appear to have evolved to establish and maintain a system that is exquisitely responsive to the physiological demands of the organism. In this review, we discuss recent and innovative work that questions the idea of steady state, static hormone receptor responses, and replaces them with new concepts of stochastic mechanisms and oscillatory activity essential for optimal function in molecular and cellular systems.


Assuntos
Receptores de Glucocorticoides/fisiologia , Ciclos de Atividade , Animais , Núcleo Celular/metabolismo , Montagem e Desmontagem da Cromatina , Regulação da Expressão Gênica , Glucocorticoides/metabolismo , Glucocorticoides/fisiologia , Humanos , Modelos Moleculares , Transporte Proteico , Receptores de Glucocorticoides/metabolismo
18.
Mol Endocrinol ; 25(6): 944-54, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21511880

RESUMO

Glucocorticoid (GC) hormones are secreted from the adrenal gland in a characteristic pulsatile pattern. This ultradian secretory activity exhibits remarkable plasticity, with distinct changes in response to both physiological and stressful stimuli in humans and experimental animals. It is therefore important to understand how the pattern of GC exposure regulates intracellular signaling through the GC receptor (GR). We have previously shown that each pulse of ligand initiates rapid, transient GR activation in several physiologically relevant and functionally diverse target cell types. Using chromatin immunoprecipitation assays, we detect cyclical shifts in the net equilibrium position of GR association with regulatory elements of GC-target genes and have investigated in detail the mechanism of pulsatile transcriptional regulation of the GC-induced Period 1 gene. Transient recruitment of the histone acetyl transferase complex cAMP response element-binding protein (CREB) binding protein (CBP)/p300 is found to precisely track the ultradian hormone rhythm, resulting in transient localized net changes in lysine acetylation at GC-regulatory regions after each pulse. Pulsatile changes in histone H4 acetylation and concomitant recruitment of RNA polymerase 2 precede ultradian bursts of Period 1 gene transcription. Finally, we report the crucial underlying role of the intranuclear heat shock protein 90 molecular chaperone complex in pulsatile GR regulation. Pharmacological interference of heat shock protein 90 (HSP90) with geldanamycin during the intranuclear chaperone cycle completely ablated GR's cyclical activity, cyclical cAMP response element-binding protein (CREB) binding protein (CBP)/p300 recruitment, and the associated cyclical acetylation at the promoter region. These data imply a key role for an intact nuclear chaperone cycle in cyclical transcriptional responses, regulated in time by the pattern of pulsatile hormone.


Assuntos
Ciclos de Atividade/efeitos dos fármacos , Proteína de Ligação a CREB/genética , Corticosterona/farmacologia , Proteínas de Choque Térmico HSP90/metabolismo , Hidrocortisona/farmacologia , Receptores de Glucocorticoides/genética , Fatores de Transcrição de p300-CBP/genética , Acetilação , Animais , Benzoquinonas/farmacologia , Proteína de Ligação a CREB/metabolismo , Linhagem Celular , Núcleo Celular/metabolismo , Imunoprecipitação da Cromatina , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Histonas/metabolismo , Humanos , Lactamas Macrocíclicas/farmacologia , Leupeptinas/farmacologia , Ligantes , Camundongos , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma , Transporte Proteico/efeitos dos fármacos , RNA Polimerase II/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Receptores de Glucocorticoides/metabolismo , Elementos Reguladores de Transcrição , Transcrição Gênica , Fatores de Transcrição de p300-CBP/metabolismo
19.
Nat Rev Neurosci ; 11(10): 710-8, 2010 10.
Artigo em Inglês | MEDLINE | ID: mdl-20842176

RESUMO

The classical concept of hypothalamus-pituitary-adrenal (HPA) homeostasis comprises a feedback system within which circulating levels of glucocorticoid hormones maintain the brain and body in an optimal steady state. However, studies involving new techniques for investigating the real-time dynamics of both glucocorticoid hormones and glucocorticoid receptor function paint a different picture--namely, of continuous dynamic equilibration throughout this neuroendocrine system. This dynamic state is dictated by feedforward and feedback regulatory loops and by stochastic interactions at the level of DNA binding. We propose that this continuous oscillatory activity is crucial for optimal responsiveness of glucocorticoid-sensitive neural processes.


Assuntos
Ritmo Circadiano/fisiologia , Retroalimentação Fisiológica , Homeostase/fisiologia , Sistema Hipotálamo-Hipofisário/fisiologia , Sistema Hipófise-Suprarrenal/fisiologia , Animais , Glucocorticoides/metabolismo , Humanos , Modelos Teóricos , Periodicidade , Receptores de Glucocorticoides/metabolismo
20.
Endocrinology ; 151(11): 5369-79, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20861228

RESUMO

Glucocorticoid hormones are released in rapid hourly hormone bursts by the adrenal gland. These ultradian oscillations are fundamental to hypothalamic-pituitary-adrenal activity and transcriptional regulation of glucocorticoid responsive genes. The physiological relevance of glucocorticoid pulsatility is however unknown. Using a novel automated infusion system, we artificially created different patterns (modulating pulse amplitude) of corticosterone (cort). Identical amounts of cort either in constant or in hourly pulses were infused into adrenalectomized rats. At the end of the infusion period, either during rising or falling concentrations of a cort pulse, animals were exposed to 99 dB noise stress (10 min). Pulsatile cort infusion led to a differential stress response, dependent on the phase of the pulse during which the stress was applied. Although constant administration of cort resulted in a blunted ACTH response to the stressor, a brisker response occurred during the rising phase of plasma cort than during the falling phase. This phase-dependent effect was also seen in the behavioral response to the stressor, which was again greater during the rising phase of each cort pulse. Within the brain itself, we found differential C-fos activation responses to noise stress in the pituitary, paraventricular nucleus, amygdala, and hippocampus. This effect was both glucocorticoid pulse amplitude and phase dependent, suggesting that different stress circuits are differentially responsive to the pattern of glucocorticoid exposure. Our data suggest that the oscillatory changes in plasma glucocorticoid levels are critical for the maintenance of normal physiological reactivity to a stressor and in addition modulate emotionality and exploratory behavior.


Assuntos
Ciclos de Atividade/fisiologia , Encéfalo/fisiologia , Corticosterona/metabolismo , Neurônios/fisiologia , Estresse Fisiológico/fisiologia , Ciclos de Atividade/efeitos dos fármacos , Adrenalectomia , Hormônio Adrenocorticotrópico/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Encéfalo/efeitos dos fármacos , Corticosterona/farmacologia , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/fisiologia , Ensaio Imunorradiométrico , Hibridização In Situ , Masculino , Neurônios/efeitos dos fármacos , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Sistema Hipófise-Suprarrenal/fisiologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Sprague-Dawley , Estresse Fisiológico/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...